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Vaziri, N. D., Y. Ding, D. S. Sangha, and R. E. Purdy.
Upregulation of NOS by simulated microgravity, potential
cause of orthostatic intolerance. J Appl Physiol 89: 338–344,
2000.—Prolonged exposure to microgravity during space-
flight or extended bed rest results in cardiovascular decondi-
tioning, marked by orthostatic intolerance and hyporespon-
siveness to vasopressors. Earlier studies primarily explored
fluid and electrolyte balance and baroreceptor and vasopres-
sor systems in search of a possible mechanism. Given the
potent vasodilatory and natriuretic actions of nitric oxide
(NO), we hypothesized that cardiovascular adaptation to
microgravity may involve upregulation of the NO system.
Male Wistar rats were randomly assigned to a control group
or a group subjected to simulated microgravity by hindlimb
unloading (HU) for 20 days. Tissues were harvested after
death for determination of total nitrate and nitrite (NOx) as
well as endothelial (e), inducible (i), and neuronal (n) NO
synthase (NOS) proteins by Western blot. Separate sub-
groups were used to test blood pressure response to norepi-
nephrine and the iNOS inhibitor aminoguanidine. Compared
with controls, the HU group showed a significant increase in
tissue NOx content and an upregulation of iNOS protein
abundance in thoracic aorta, heart, and kidney and of nNOS
protein expression in the brain and kidney but no discernible
change in eNOS expression. This was associated with
marked attenuation of hypertensive response to norepineph-
rine and a significant increase in hypertensive response to
aminoguanidine, suggesting enhanced iNOS-derived NO
generation in the HU group. Upregulation of these NOS
isotypes can contribute to cardiovascular adaptation to mi-
crogravity by promoting vasodilatory tone and natriuresis
and depressing central sympathetic outflow. If true in hu-
mans, short-term administration of an iNOS inhibitor may
ameliorate orthostatic intolerance in returning astronauts
and patients after extended bed rest.

nitric oxide synthase; syncope; orthostatic hypotension;
spaceflight; weightlessness; astronauts

PROLONGED EXPOSURE TO MICROGRAVITY during spaceflight
or extended bed rest on Earth results in cardiovascular
deconditioning, which is marked by orthostatic intoler-
ance and impaired exercise capacity on reexposure to
gravity (6, 52). Gravitational forces on Earth promote a
normal shift of the extracellular fluids to the lower

parts of the body. The effect of gravity on extracellular
fluid distribution is evidenced by the presence of a
pronounced gradient in mean arterial blood pressure
between the head (;70 mmHg) and feet (;200 mmHg)
during upright posture in normal humans on Earth
(12). Exposure to microgravity leads to an immediate
redistribution of extracellular fluid to the upper half of
the body, as evidenced by the rise in mean arterial
blood pressure in the head, from ;70 mmHg on Earth
to ;100 mmHg in space (12). This results in an early
rise and a later fall in central venous pressure and
development of hypovolemia, resting tachycardia, and
diminished stroke volume in chronic phase (52). The
upward shift in extracellular fluid distribution appears
to be responsible for the cardiovascular adaptation to
microgravity. This viewpoint is supported by the obser-
vation that a cardiovascular deconditioning similar to
that seen in returning astronauts occurs in humans
kept in a supine position with a 6% head-down tilt on
Earth (52).

Under normal conditions, assumption of the upright
position is accompanied by a significant vasoconstric-
tion in the lower extremities. This helps to maintain
blood pressure and flow in the upper part of the body,
including the brain, by mitigating the gravitational
shift of blood to the lower parts of the body. However,
the physiological response is impaired in microgravity-
adapted individuals, such as the returning astronauts
who experience marked orthostatic hypotension and
an increased propensity to syncope (52). This is, in
part, due to hypovolemia and impaired vasoconstric-
tive response in such individuals (5).

Hindlimb unloading (HU) in rodents has been used
as a model to simulate cardiovascular deconditioning
in humans. This model exhibits many of the known
cardiovascular consequences of microgravity in hu-
mans, including extracellular fluid redistribution, al-
tered central venous pressure, hypovolemia, and re-
duced exercise capacity (8). Likewise, the HU animals
exhibit a depressed vasoconstrictive response to nor-
epinephrine (31) and other vasoconstrictors (8).

Nitric oxide (NO) is an endogenous modulator, which
is produced by various cell types in different tissues
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and which regulates numerous biological processes.
For instance, NO is the most potent endogenous vaso-
dilator and as such plays an important role in the
regulation of renal and systemic vascular resistance,
tissue perfusion, and renal hemodynamics. In addition,
NO inhibits renal tubular sodium reabsorption (17–19,
21, 30, 32, 33, 36, 37, 44, 45) and as such contributes to
sodium and extracellular fluid volume homeostasis.
Through these mechanisms, NO plays an important
role in the regulation of blood pressure.

In an earlier study, we found functional evidence for
an HU-induced increase in vascular NO activity (34).
This was based on the observation that endothelium-
mediated vasodilatory activity was increased in carotid
arteries and the vasodilatory response to L-arginine
was increased in the femoral arteries of the HU rats.
Moreover, the vasodilatory response to L-arginine
could be blocked by the inducible nitric oxide synthase
(iNOS)-selective inhibitor, aminoguanidine, pointing
to a possible rise in vascular iNOS activity. These
observations led to the hypothesis of the present study
that extended exposure to microgravity can lead to a
general upregulation of the NO system. This hypothe-
sis was addressed using the HU rat to simulate micro-
gravity.

METHODS

Animal Model

The protocol employed in this study was approved by the
Institutional Animal Care and Use Committee of the Univer-
sity of California, Irvine. Male Wistar rats weighing 250–300
g (Simonsen Laboratories, Gilroy, CA) were housed in a
climate-controlled room (22°C) with a 12:12-h light-dark cy-
cle. Water and rat chow were provided ad libitum. Animals
were randomly assigned to control or HU groups. HU was
achieved by the use of a tail harness that partially elevated
the hindlimbs above the floor of the cage (31, 39). Briefly, the
tail was cleaned, and a coat of benzoin tincture was applied
and allowed to air dry until tacky. Adhesive strips (Fas-Trac
of California, Van Nuys, CA) the width of the tail were then
looped through a swivel harness and pressed along the sides
of the tail to form a tubular casing around the tail. Thereaf-
ter, the tail was wrapped with Electoplast bandage (Beiers-
dorf, Norwalk, CT) followed by a thin layer of plaster cast
material (Sammons Preston, Bolingbrook, IL). The rat was
suspended by the swivel harness from a hook at the top
center of the suspension cage, allowing a free 360° rotation.
The height of the hook was adjusted such that the front limbs
were in contact with the floor, and the hindlimbs were ele-
vated ;0.5 cm above the floor when fully extended, tilting the
body of the rat to an angle of 35° with the floor of the cage.
The animals were exposed to HU for 20 days. At the conclu-
sion of the 20-day observation period, subgroups of HU and
control animals (n 5 6 in each group) were used for determi-
nations of blood pressure response to norepinephrine and
aminoguanidine as described below. A second subgroup of six
HU animals and six control rats were killed, and tissues were
harvested for determination of NOS isotypes.

The rats were killed by exposure to 100% CO2 for 90 s to
induce deep anesthesia (10). The chest and abdomen were
opened, and the heart, thoracic aorta, kidney, and brain were
removed, cleaned in PBS, snap frozen in liquid nitrogen, and
stored at 270°C until processed.

Response to Norepinephrine and Aminoguanidine

Under general anesthesia with Inactin (100 mg/kg ip), the
left jugular vein and carotid artery were cannulated with
polyethylene tubes (PE-50). The animal was placed on a
heating pad, and arterial blood pressure was monitored di-
rectly via the arterial catheter that was connected to a Gould
P-50 pressure transducer and recorded on a Dynograph
R511A recorder (Sensor Medics, Anaheim, CA). Once stable,
blood pressure was continuously recorded for 5 min to deter-
mine the baseline value. Subsequently, pressor responses to
bolus injections of norepinephrine (0.15 mg/kg; Sigma Chem-
ical, St. Louis, MO) and the iNOS inhibitor aminoguanidine
(30 mg/kg; Sigma Chemical) were determined. Response to
each drug was calculated as peak change in blood pressure
from the baseline value. Mean arterial pressure was calcu-
lated as the sum of diastolic blood pressure and one-third of
the pulse pressure. Each drug was injected at least twice, and
the average of the values obtained was used. A 30-min
recovery period was allowed after each bolus injection of
norepinephrine. However, the aminoguanidine injections
were separated by a 60-min interval.

NOS Protein Measurements

Homogenates (25% wt/vol) of kidney, heart (left ventricle),
thoracic aorta, and brain were prepared in 10 mM HEPES
buffer, pH 7.4, containing 320 mM sucrose, 1 mM EDTA, 1
mM dithiothreitol (DTT), 10 mg/ml leupeptin, and 2 mg/ml
aprotinin at 0–4°C with the aid of a tissue grinder fitted with
a motor-driven ground glass pestle. Homogenates were cen-
trifuged at 12,000 g for 5 min at 4°C to remove nuclear
fragments and tissue debris without precipitating plasma
membrane fragments. The supernatant was used for deter-
mination of NOS isotype proteins. Total protein concentra-
tion was determined by using a kit from Bio-Rad Laborato-
ries (Hercules, CA).

Endothelial NOS (eNOS), neuronal NOS (nNOS), and
iNOS proteins were measured by Western blot analyses
using anti-eNOS, anti-nNOS, and anti-iNOS monoclonal an-
tibodies (Transduction Laboratories, Lexington, KY) in a
manner the same as that previously described by Vaziri et al.
(48, 49). Briefly, aorta, kidney, heart, and brain tissue prep-
arations (50 mg of protein for aorta and brain and 100 mg for
kidney and heart) were size-fractionated on 4–12% Tris-
glycine gel (Novex, San Diego, CA) at 120 V for 3 h. In
preliminary experiments, we had found that the given pro-
tein concentrations were within the linear range of detection
for our Western blot technique. After electrophoresis, pro-
teins were transferred onto Hybond-enhanced chemilumines-
cence (ECL) membrane (Amersham Life Science, Arlington
Heights, IL) at 400 mA for 120 min using the Novex transfer
system. The membrane was prehybridized in 10 ml of buffer
A (10 mM Tris-hydrochloride, pH 7.5, 100 mM NaCl, 0.1%
Tween 20, and 10% nonfat milk powder) for 1 h and then
hybridized for an additional 1-h period in the same buffer
containing 10 ml of the given anti-NOS monoclonal antibody
(1:1,000). The membrane was then washed for 30 min in a
shaking bath, changing the wash buffer (buffer A without
nonfat milk) every 5 min before the 1-h incubation in buffer
A plus goat anti-mouse IgG-horseradish peroxidase at the
final titer of 1:1,000. Experiments were carried out at room
temperature. The washes were repeated before the mem-
brane was developed with a light-emitting nonradioactive
method using ECL reagent (Amersham Life Science). The
membrane was then subjected to autoluminography for 1–5
min. The autoluminographs were scanned with a laser den-
sitometer (model PD1211, Molecular Dynamics, Sunnyvale,
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CA) to determine the relative optical densities of the bands.
In all instances, the membranes were stained with Ponceau
stain, which verified the uniformity of protein load and trans-
fer efficiency across the test samples.

Measurement of Tissue Nitrate Plus Nitrite

Kidney tissues (25%, wt/vol) were homogenized in 10 mM
HEPES buffer, pH 7.4, containing 1 mM EDTA, 1 mM DTT,
10 mg/ml leupeptin, and 2 mg/ml aprotinin at 0–4°C with the
aid of a Polytron homogenizer. Homogenates were centri-
fuged at 12,000 g for 5 min at 4°C, and the supernatant was
used for the determination of total nitrate plus nitrite (NOx)
using the purge system of a Sievers Instruments model 270B
NO analyzer (Boulder, CO) as described previously (50).

Data Analysis

Regression analysis and a t-test were used in the statisti-
cal analysis of the data, which are presented as means 6 SE.
P values #0.05 were considered significant.

RESULTS

NOS Isotype Values

Aorta. iNOS and eNOS proteins were detectable in
the aorta tissue preparations in both groups. The HU
group exhibited a marked upregulation of iNOS pro-
tein expression in the aorta compared with the control
group (P , 0.01). In contrast, aorta eNOS protein in
the HU group was similar to that found in the control
group (Fig. 1).

Heart. Both iNOS and eNOS proteins were ex-
pressed in the cardiac tissues of the study animals.
Compared with the control group, the HU group
showed a significant increase in heart tissue iNOS
protein abundance (P , 0.05). However, no significant
difference was found in cardiac tissue eNOS abun-
dance between the HU and the control group (Fig. 2).

Kidney. Immunodetectable eNOS, iNOS, and nNOS
proteins were present in the renal tissue preparations
of all animals. As with the heart and aorta, kidney
iNOS expression was significantly increased (P , 0.01)
in the HU group. In addition, nNOS protein abundance
was significantly elevated in the HU animals when
compared with that found in the control group (P ,
0.01). However, as with the other tissues, kidney eNOS
protein expression was unaffected by HU treatment.
Data are illustrated in Fig. 3.

Brain. Determination of nNOS protein revealed a
significant elevation of nNOS protein abundance in the
brain of HU animals compared with that in the control
group (P , 0.01). Data are depicted in Fig. 4.

Tissue NOx Level

Kidney tissue NOx content in the HU group (1.08 6
0.08 nmol/mg protein) was significantly higher than
that found in the control group (0.77 6 0.06 nmol/mg
protein, P , 0.05). A significant correlation was found
between kidney tissue NOx content and kidney tissue
iNOS (r 5 0.809, P , 0.05) and nNOS (r 5 0.902, P ,
0.01) but not eNOS [r 5 0.112, P 5 not significant
(NS)].

Response to Norepinephrine and Aminoguanidine

Baseline systolic arterial blood pressure in the HU
group (140 6 20 mmHg) was not significantly different
from that seen in the control group (147 6 15 mmHg,
P 5 NS). Likewise, baseline heart rates were compa-
rable in the two groups (442 6 19 beats/min and 439 6
22 beats/min, respectively, P 5 NS). Norepinephrine
administration resulted in an expected rise in arterial
blood pressure in both groups. However, the HU group
exhibited a significant attenuation of hypertensive re-
sponse to norepinephrine administration compared
with that seen in the control group (P , 0.01). Admin-
istration of the iNOS inhibitor aminoguanidine re-
sulted in a significant rise in blood pressure in both
groups. However, aminoguanidine administration elic-
ited a significantly greater pressor response in the HU
group compared with that in the control group (Fig. 5).
These findings point to enhanced iNOS activity and

Fig. 1. Representative Western blots (3 animals from each group)
and group data (n 5 6 in each group) depicting aorta endothelial
nitric oxide synthase (eNOS, top) and inducible NOS (iNOS, bottom)
protein abundance in the hindlimb unloaded (HU) and control (CTL)
groups. **P , 0.01
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provide functional evidence for the observed increase
in iNOS abundance in the HU group.

DISCUSSION

The HU group exhibited a significant upregulation of
iNOS protein expression in the aorta, heart, and the
kidney. This was accompanied by increased nNOS pro-
tein expression in the brain and the kidney in the HU
group. However, eNOS abundance was not altered by
chronic HU in our animals. The elevation of renal
iNOS and nNOS proteins was accompanied by a sig-
nificant increase in the renal tissue content of stable
NO metabolites (NOx). This observation points to in-
creased NO production in the kidney. In fact, renal
tissue NOx was significantly related to the correspond-
ing iNOS and nNOS levels, which were elevated, but
not with eNOS, which was unaffected by HU.

According to the traditional view, iNOS is not
expressed under physiological conditions. Instead,
iNOS is induced under certain pathological conditions,
namely, during inflammatory states and, most dramat-
ically, in septic shock. iNOS can also be induced exper-

imentally both in vivo and in vitro by endotoxin and
the proinflammatory cytokines, tumor necrosis fac-
tor-a, interleukin-1b, and interferon-g (38). In addition
to the classic induction pathway noted above, a low-
level constitutive expression of iNOS has been recently
demonstrated in several tissues, including kidney,
heart, and blood vessel wall under normal conditions
(1, 23, 24, 29). Moreover, dysregulation of constitu-
tively expressed iNOS has been reported in several
clinical and experimental conditions associated with
disturbances of blood pressure, fluid, and electrolytes
(27, 35, 47–49). For instance, we have shown down-
regulation of renal and vascular tissue iNOS in uremic

Fig. 3. Representative Western blots (3 animals from each group)
and the corresponding group data (n 5 6 rats in each group) illus-
trating eNOS (top), iNOS (middle), and neuronal NOS (nNOS; bot-
tom) abundances in the kidney tissue preparations from the HU and
the control groups. **P , 0.01

Fig. 2. Representative Western blots (3 animals from each group)
and group data (n 5 6 rats in each group) depicting heart eNOS (top)
and iNOS (bottom) protein abundance in the HU and control groups.
*P , 0.05
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rats, cyclosporine-treated animals, and Dahl salt-sen-
sitive rats (27, 48, 49), models which are characterized
by hypertension and salt retention. In contrast, we
have found marked upregulation of renal and vascular
iNOS expression in young spontaneously hypertensive
rats wherein hypertension is not associated with salt
retention (47). Thus low-level constitutive expression
of iNOS plays a physiologically regulatory role that is
distinct from classic endotoxin/cytokine-mediated in-
duction of iNOS leading to massive release of NO and
other reactive species, hypotension, and cytotoxicity.
We believe that upregulation of renal, vascular, and
cardiac iNOS expression and of renal and brain nNOS
expression in the HU group contributes to adaptation
to simulated microgravity and the resulting cardiovas-
cular deconditioning in this model. This viewpoint is
supported by the observation that the HU animals
exhibited a significantly greater hypertensive response
to administration of the reputed iNOS inhibitor, ami-
noguanidine, than did the control group. The observed
pressor response in the HU group points to increased
iNOS-derived NO production in these animals, thus
providing functional evidence for the observed increase
in iNOS protein abundance. Together, these findings
support the role of upregulation of iNOS expression in
the adaptive vasodilatory response to simulated micro-
gravity and hyporesponsiveness to vasoconstrictive
agents previously shown by Purdy et al. (31, 34) and
Delp et al. (8) and confirmed in the present study.
Moreover, we have recently reported functional evi-
dence suggesting that iNOS activity is elevated in the
femoral artery of HU rats (34).

Aminoguanidine was used because it demonstrated
selectivity for iNOS over eNOS and nNOS. For exam-
ple, in our earlier study (34), 100 mM aminoguanidine
had no effect on acetylcholine-mediated, endothelium-
dependent relaxation of isolated arteries. Moreover,
Wolff and Lubeskie (55) showed that aminoguanidine
is 50–500 times more selective for iNOS over nNOS. In
the present study, we measured NOS isotypes in the
thoracic aorta, which is a conduit artery. Although

small resistance arteries would have been more desir-
able, their use in this assay, which requires a substan-
tial amount of tissue for protein extraction, was im-
practical. It is of interest that changes of eNOS and
iNOS in the kidney and heart, tissues that are replete
with resistance arteries and arterioles, paralleled
those found in the aorta of HU animals. This observa-
tion suggests that findings in the aorta may mirror
those of the small arteries and arterioles, which are the
primary target of NO. Immunohistological studies are
required to confirm this supposition.

In addition to upregulation of iNOS, the HU animals
employed in the present study exhibited a marked
upregulation of kidney nNOS protein expression.
nNOS is normally expressed in different parts of the
kidney, particularly in macula densa and endothelia of
efferent arteriole (2, 25, 44, 54). nNOS-derived NO
plays an important role in modulation of renal micro-
vascular function and tubuloglomerular feedback (13–
15, 20, 28, 40, 41, 46, 53). In addition, renal iNOS-
derived NO is thought to play an important role in
renal sodium handling. For instance, conditions
marked by impaired renal sodium handling and salt
sensitivity such as seen in Dahl salt-sensitive rats (27),
cyclosporine-induced hypertension (49), and chronic
renal failure (48) are accompanied by depressed iNOS
expression in the kidney and other tissues. It is, there-
fore, conceivable that upregulations of renal iNOS and
nNOS may facilitate renal sodium excretion and thus
contribute to natriuresis and hypovolemia, which are
known consequences of extended exposure to micro-
gravity.

Fig. 4. Representative Western blot (3 animals from each group) and
group data (n 5 6 rats in each group) depicting brain nNOS protein
abundance in the HU and control groups. **P , 0.01

Fig. 5. Change in mean arterial pressure in response to intravenous
bolus injections of norepinephrine [0.15 mg/kg (Sigma Chemical); top]
and iNOS inhibitor aminoguanidine [30 mg/kg (Sigma Chemical);
bottom] in the HU and control groups. **P , 0.01; n 5 6 rats in each
group.
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The HU animals employed in the present study ex-
hibited a marked upregulation of brain nNOS abun-
dance. nNOS is normally expressed in various regions
of the brain and is thought to be involved in neurogenic
control of blood pressure by inhibiting central sympa-
thetic outflow (4, 11, 43, 51). Consequently, nNOS-
derived NO in the brain is considered to exert a blood
pressure-lowering influence. If true, upregulation of
brain nNOS may potentially contribute to orthostatic
intolerance by suppressing the central sympathetic
outflow following extended exposure to microgravity.
In support of this notion, Moffitt et al. (22) have re-
cently shown a marked attenuation of basal lumbar
and renal sympathetic nerve activities in the HU ani-
mals compared with the control rats. They have fur-
ther demonstrated a significant attenuation of lumbar
and renal sympathetic system activity in response to a
hypotensive challenge in these animals (22). It is of
interest that brain nNOS expression is increased in
various models of hypertension, including rats with
chronic renal failure (56), salt-loaded, salt-sensitive
Dahl rats (27), and rats with aortic coarctation-induced
hypertension (3). These observations suggest the pos-
sible role of elevated pressure in regulation of brain
nNOS expression. Although the HU animals did not
have systemic hypertension, the shift in gravitational
forces are known to markedly raise blood pressure in
the cranial circulation (12). This local rise in the cra-
nial blood pressure may, therefore, be responsible for
the observed upregulation of brain nNOS protein ex-
pression in HU animals in a manner analogous to that
seen in animals with systemic hypertension.

Although Western blot analysis demonstrated up-
regulations of iNOS and nNOS in the given tissues, it
did not identify specific regions or cell types contribut-
ing to this phenomenon. Immunohistological studies
are required to address this issue.

Numerous authors (7–9, 31, 34, 42) have used the
HU model of the present study to simulate micrograv-
ity and have compared HU rats to unsuspended, sep-
arately caged controls. It must be acknowledged that
the stress associated with the tail harness itself could
have been responsible for the cardiovascular effects of
this model. However, this seems unlikely on the follow-
ing grounds. Murison et al. (26) argued that the effects
of HU are not a result of an increase in stress. He found
only an initial transient increase in plasma corticoste-
rone. In addition, the absence of cardiac hypertrophy
suggests that the cardiovascular system was not
stressed by HU (52). Kahwaji et al. (16) also found that
HU substantially reduced the maximal vascular con-
traction to norepinephrine but had no effect on that to
serotonin. This also argues against a nonspecific effect
of HU, such as stress. Although an effect of HU, inde-
pendent of its hemodynamic effects, is unlikely, this
possibility cannot be excluded with certainty. Future
experiments comparing harnessed rats in the hindlimb
elevated vs. horizontal positions will be required to
resolve this issue.

In conclusion, extended exposure to simulated micro-
gravity in the HU animals resulted in marked upregu-

lations of renal, vascular, and cardiac iNOS protein
expression and enhanced renal and brain nNOS pro-
tein expression and tissue NOx content. Upregulation
of iNOS and nNOS expressions in the HU animals was
coupled with a depressed pressor response to norepi-
nephrine and an enhanced pressor response to the
iNOS inhibitor aminoguanidine. The latter findings
provide functional evidence for enhanced iNOS-de-
rived NO activity in the HU animals. Upregulation of
iNOS and nNOS may play an important role in chronic
adaptation to microgravity and subsequent orthostatic
intolerance on reexposure to normal gravity. If true,
short-term iNOS inhibition may ameliorate the ortho-
static intolerance associated with extended exposure to
microgravity. Further studies are needed to explore
the usefulness of this therapeutic strategy.

This study was supported, in part, by National Aeronautics and
Space Administration Grant NAG9–1149.
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